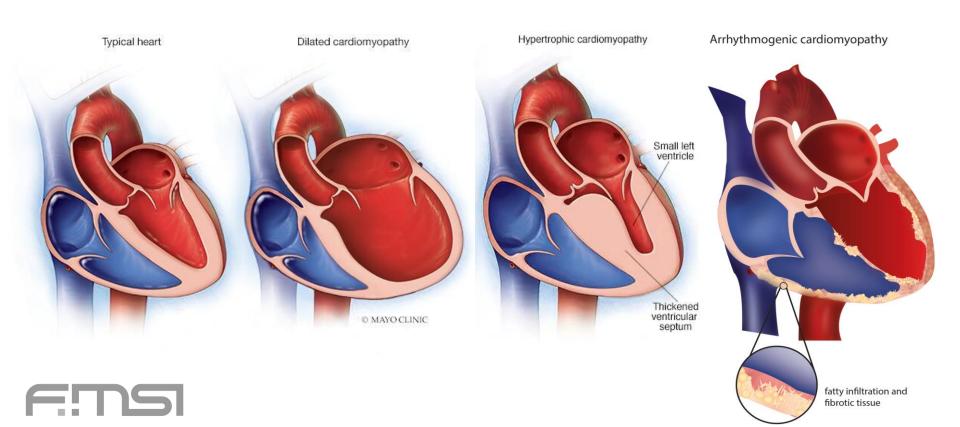
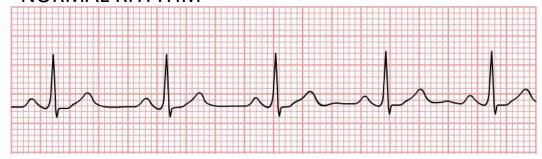
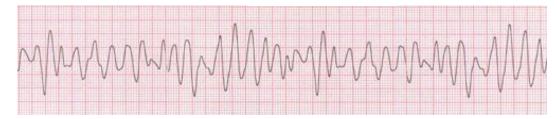
ALESSANDRO ZORZI, MD, PhD

Associate professor of cardiology
Department of Cardiac, Thoracic and Vascular Sciences and Public Health
University of Padua, IT
alessandro.zorzi@unipd.it

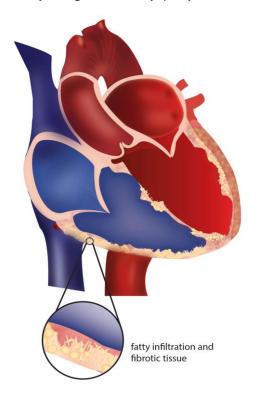

The Italian Cardiological Protocols (COCIS) in Sudden Cardiac Death Prevention: Cardiomyopathies

What is a cardiomyopathy?

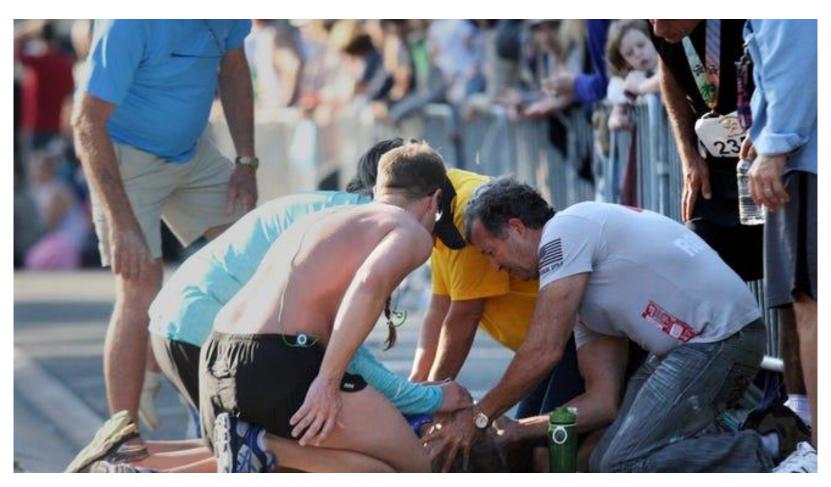

A DISEASE OF THE MYOCITES (THE HEART CELLS) CAUSED BY GENETIC MUTATIONS OR EXTERNAL FACTORS


Cardiomyopathy and sport: a dangerous union

NORMAL RHYTHM

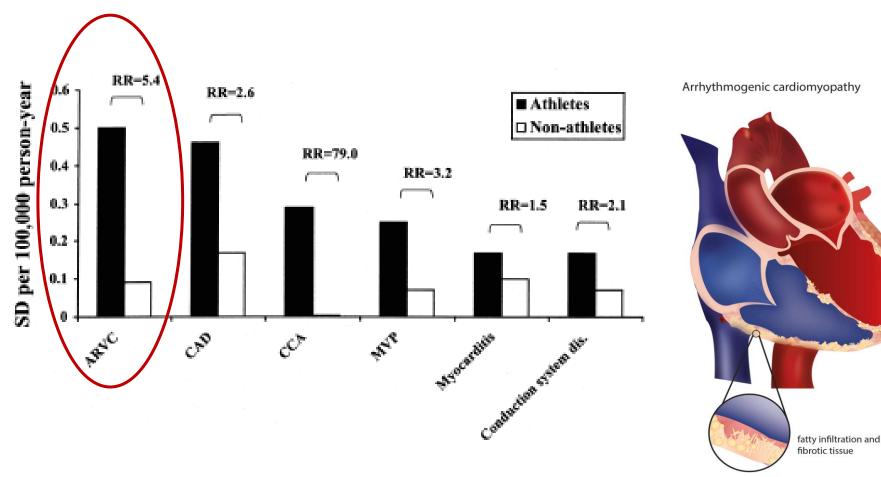


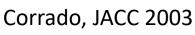
CAOTIC RHYTHM



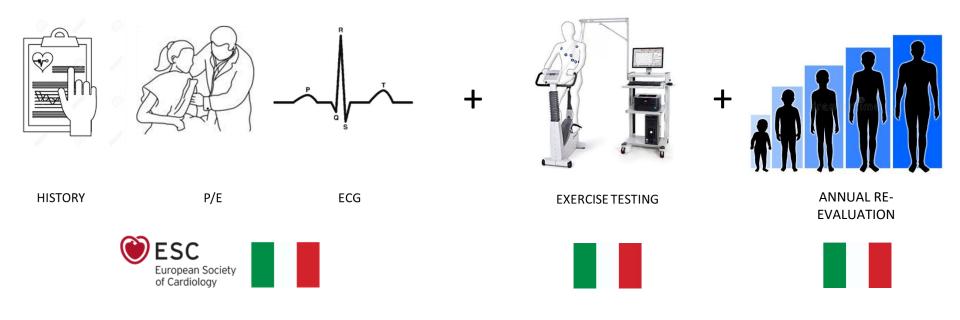
Arrhythmogenic cardiomyopathy

Cardiomyopathy and sport: a dangerous union



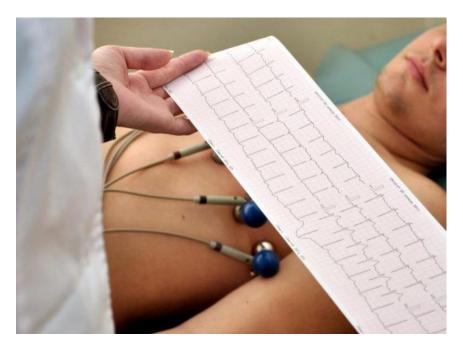


Cardiomyopathy and sport: a dangerous union



How can PPS identify athletes with CMP? The Italian model

How can PPS identify athletes with CMP? Family and personal history



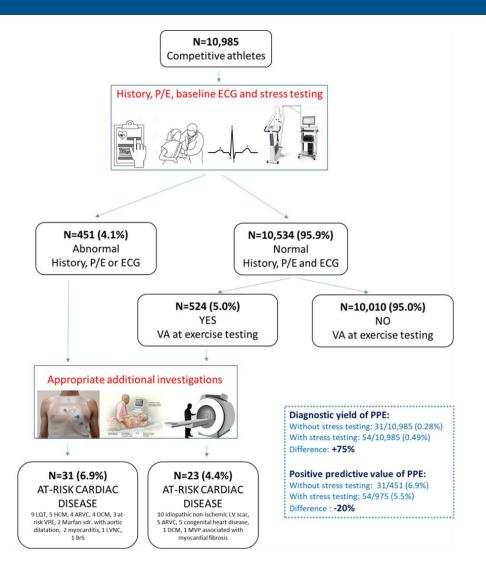
≈ 20% of CASES

How can PPS identify athletes with CMP? Resting ECG

>50% of CASES

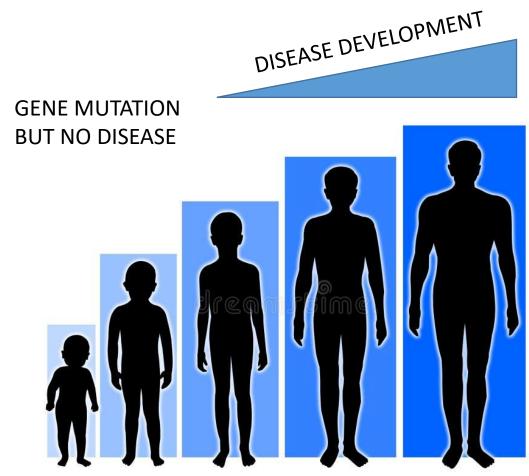
ABNORMAL

How can PPS identify athletes with CMP? Exercise ECG



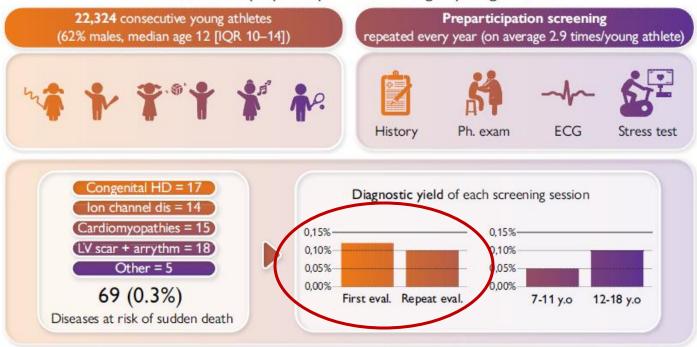
≈50% of CASES

How can PPS identify athletes with CMP? Exercise ECG



Zorzi et al. Eur J Prev Cardiol 2020

How can PPS identify athletes with CMP? Annual re-evaluation



How can PPS identify athletes with CMP? Annual re-evaluation

The results: old data

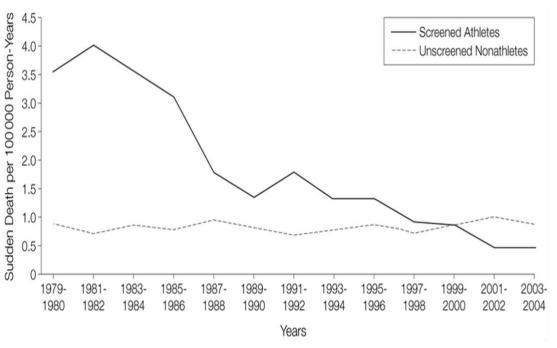
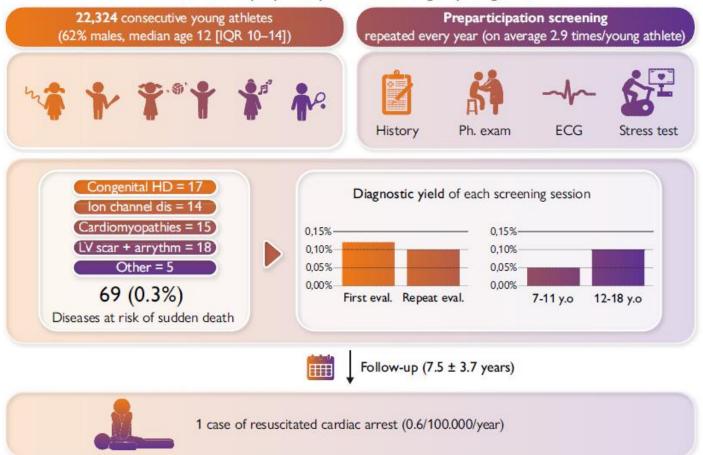


Table 1. Number and Annual Incidence Rates of Total and Cause-Specific Sudden Cardiovascular Death in Screened Athletes and Unscreened Nonathletes in Relation to 3 Screening Periods^a

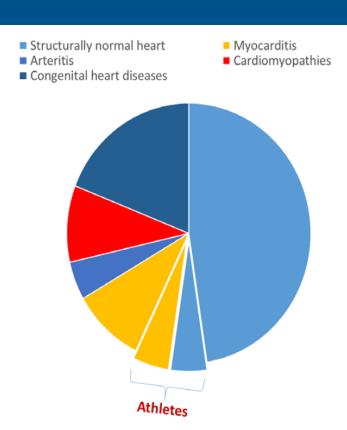
	Periods							
	Prescreening (1979-1981)		Early Screening (1982-1992)		Late Screening (1993-2004)			
	No. of Events	Incidence Rate (95% CI)	No. of Events	Incidence Rate (95% CI)	No. of Events	Incidence Rate (95% CI)	P for Trend	RR (95% CI)†
Total sudden deaths in athletes	14	4.19 (1.78-7.59)	29	2.35 (1.94-2.75)	12	0.87 (0.46-1.28)	.001	0.21 (0.09-0.48)
Cardiomyopathies	5	1.50 (0.21-2.78)	7	0.57 (0.26-0.87)	2	0.15 (0-0.36)	.002	0.10 (0.01-0.59)
Coronary artery disease	3	0.90 (0-3.12)	5	0.41 (0.09-0.72)	3	0.22 (0-0.47)	.08	0.24 (0.03-1.81)
Cardiac conduction disease	1	0.30 (0-1.56)	2	0.16 (0-0.40)	1	0.07 (0-0.23)	.29	0.24 (0.01-19.02
Myocarditis	1	0.30 (0-1.56)	4	0.32 (0.02-0.63)	2	0.15 (0-0.36)	.40	0.48 (0.02-28.61
Congenital coronary anomalies	1	0.30 (0-1.56)	4	0.32 (0.02-0.63)	2	0.15 (0-0.36)	.40	0.48 (0.02-28.61
Mitral valve prolapse	1	0.30 (0-1.56)	4	0.32 (0.02-0.63)	1	0.07 (0-0.23)	.19	0.24 (0.01-19.02
Otheri	2	0.60 (0-1.87)	3	0.24 (0-0.52)	- 1	0.07 (0-0.23)	.06	0.12 (0.01-2.33)

Table 2. Cardiovascular Conditions Causing Disqualification From Competitive Sports in 879 Athletes Over 2 Consecutive Screening Periods (1982-1992 and 1993-2004) at the Center for Sports Medicine in Padua, Italy

	No. (%) of Disqualified Athetes					
Cardiovascular Causes of Disqualification	Total Study Period (1982-2004)	Early Screening Period (1982-1992)	Late screening Period (1993-2004)	<i>P</i> Value		
Total No. screened*	42 386	22312	20074			
Total No. disqualified†	879 (2.0)	455 (2.0)	424 (2.1)			


Corrado D et al. JAMA 2006

The results: recent data


Cardiovascular preparticipation screening in young athletes

The results: recent data

	Total	Athletes
Congenital coronary abn.	2	
Congenital aortic stenosis	2	
Hypertrophic cardiomyopathy	1	
Arrhythmogenic cardiomyopathy	1	
Arteritis	1	
Acute myocarditis	3	1
CPVT	1	
Unexplained SCD	10	1

Figure 1 Causes of sudden cardiac death in the Veneto region of Italy in children aged 8–15 years. CPVT, catecholaminergic polymorphic ventricular tachycardia; SCD, sudden cardiac death.

Sports eligibility: always denied?

OLD ITALIAN GUIDELINES

A BIG NO

ANY CARDIOMYOPATHY

ANY SEVERITY

ANY COMPETITIVE SPORT

Sports eligibility: always denied?

MILD CARDIOMYOPATHIES MAY CONTINUE TO PLAY SPORT AFTER CAREFUL EVALUATION AND RISK ASSESSMENT

New in the 2023 GL: exercise prescription

YOU CAN'T DO SPORT

BUT YOU CAN AND SHOULD DO EXERCISE

New in the 2023 GL: exercise prescription

Although the diagnosis of cardiomyopathy is not compatible with competitive sports activities in most cases, this does not mean that patients should become sedentary. In fact, there is no clear evidence that physical activity with mild-to-moderate cardiovascular engagement increases the risk of arrhythmias or worsening of the disease phenotype, while there are undeniable benefits for physical and mental health, as well as for social inclusion. Patients should be evaluated at a center with proven experience, in order to receive a personalized exercise prescription based on the disease phenotype and clinical conditions

Work in progress

2025 ITALIAN RECCOMENDATION FOR EXERCISE PRESCRIPTION IN PATIENTS WITH CARDIOVASCULAR DISEASES

Key points

Cardiomyopathies are among the most dangerous conditions for athletes

The Italian preparticipation screening model is based on:

- History, physical examination and resting ECG
- + exercise testing
- + annual re-evaluation

This model increases the chances of identify cardiomyopathies

Recent data suggests a very low rate of cardiac arrests due to cardiomyopathies in Italian athletes

Although patients with moderate and severe disease should not engage in competitive sports, this does not mean that they should become sedentary

